Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals.

نویسندگان

  • N Laskaris
  • S Fotopoulos
  • P Papathanasopoulos
  • A Bezerianos
چکیده

This technical note describes a robust version of moving averages, that enables reliable monitoring of the evoked potential (EP) signals. A cluster analysis (CA) procedure is introduced to robustify the signal averaging (SA). It is implemented via a Hopfield neural network (HNN), which performs selection of the trials forming a cluster around the current state of the EP signal. The core of this cluster serves as an estimate of the instantaneous EP. The effectiveness of the method, indicated by application to real data, and its computation efficiency, due to the use of simple matrix operations, makes it very promising for clinical observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Implementing Stochastic Hopfield-Network-based Linear Solvers on a Hardware-Constrained Neural Substrate

IBM’s TrueNorth neurosynaptic system provides an appealing platform for deploying numerical algorithms for ultra-low power, real time, and mobile applications. A recurrent Hopfield neural network is used to solve for the Moore-Penrose matrix pseudoinverse to solve a broad class of linear optimizations. The TrueNorth hardware platform is heavily constrained through weight quantization and severe...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Robust Discovery of Temporal Structure in Multi-neuron Recordings Using Hopfield Networks

We present here a novel method for the classical task of extracting reoccurring spatiotemporal patterns from spiking activity of large populations of neurons. In contrast to previous studies that mainly focus on synchrony detection or exactly recurring binary patterns, we perform the search in an approximate way that clusters together nearby, noisy network states in the data. Our approach is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electroencephalography and clinical neurophysiology

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 1997